Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. A master-equation approach to the description of proton-driven spin diffusion from crystal geometry using simulated zero-quantum lineshapes
 
research article

A master-equation approach to the description of proton-driven spin diffusion from crystal geometry using simulated zero-quantum lineshapes

Dumez, Jean-Nicolas
•
Emsley, Lyndon  
2011
Physical Chemistry Chemical Physics

Measurements of proton-driven carbon-13 spin diffusion (PDSD) by NMR spectroscopy are a central component of structural analyses of biomolecules in the solid-state. However, the quantitative link between experimental PDSD data and structural information is difficult to make. Here we observe that a master-equation approach can be used to model full PDSD dynamics accurately in polycrystalline (13)C-labelled L-histidine center dot HCl center dot H(2)O under magic-angle spinning. In the master-equation approach, PDSD rates and effective dipolar couplings are related by a function of the carbon-carbon zero-quantum lineshapes; we find that numerical simulations of the zero-quantum lineshapes are sufficiently accurate so as to allow the calculation of PDSD rates that are in good agreement with the measured rates, directly from crystal geometry and with no adjustable parameters. Finally, using carbon-carbon internuclear distances we illustrate the potential of the master-equation approach for structural studies. Generalisation of these results to proton-driven carbon-13 spin diffusion in more complex molecular systems is readily envisaged.

  • Details
  • Metrics
Type
research article
DOI
10.1039/c1cp00004g
Web of Science ID

WOS:000289203800013

Author(s)
Dumez, Jean-Nicolas
Emsley, Lyndon  
Date Issued

2011

Publisher

ROYAL SOC CHEMISTRY

Published in
Physical Chemistry Chemical Physics
Volume

13

Issue

16

Start page

7363

End page

7370

Editorial or Peer reviewed

REVIEWED

Written at

OTHER

EPFL units
LRM  
Available on Infoscience
January 8, 2015
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/110014
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés