Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Glassy low-energy spin fluctuations and anisotropy gap in La1.88Sr0.12CuO4
 
research article

Glassy low-energy spin fluctuations and anisotropy gap in La1.88Sr0.12CuO4

Romer, A. T.
•
Chang, J.  
•
Christensen, N. B.
Show more
2013
Physical Review B

We present high-resolution triple-axis neutron scattering studies of the high-temperature superconductor La1.88Sr0.12CuO4 (Tc=27 K). The temperature dependence of the low-energy incommensurate magnetic fluctuations reveals distinctly glassy features. The glassiness is confirmed by the difference between the ordering temperature TN≃Tc inferred from elastic neutron scattering and the freezing temperature Tf≃11 K obtained from muon spin rotation studies. The magnetic field independence of the observed excitation spectrum as well as the observation of a partial suppression of magnetic spectral weight below 0.75 meV for temperatures smaller than Tf, indicate that the stripe frozen state is capable of supporting a spin anisotropy gap, of a magnitude similar to that observed in the spin and charge stripe-ordered ground state of La1.875Ba0.125CuO4. The difference between TN and Tf implies that the significant enhancement in a magnetic field of nominally elastic incommensurate scattering is caused by strictly inelastic scattering—at least in the temperature range between Tf and Tc—which is not resolved in the present experiment. Combining the results obtained from our study of La1.88Sr0.12CuO4 with a critical reappraisal of published neutron scattering work on samples with chemical composition close to p=0.12, where local probes indicate a sharp maximum in Tf(p), we arrive at the view that the low-energy fluctuations are strongly dependent on composition in this regime, with anisotropy gaps dominating only sufficiently close to p=0.12 and superconducting spin gaps dominating elsewhere.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Romer et al. - 2013 - Glassy low-energy spin fluctuations and anisotropy.pdf

Access type

openaccess

Size

807.73 KB

Format

Adobe PDF

Checksum (MD5)

6c118d71280dd1652871369f65b204d9

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés