Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Influence of tides and waves on the fate of nutrients in a nearshore aquifer: Numerical simulations
 
research article

Influence of tides and waves on the fate of nutrients in a nearshore aquifer: Numerical simulations

Anwar, N.
•
Robinson, C.
•
Barry, David Andrew  
2014
Advances In Water Resources

A numerical investigation is presented that demonstrates the influence of tides and waves on the transport and transformation of nutrients (NO3-; NH4+; PO43-) in a homogeneous unconfined nearshore aquifer and subsequent fluxes to the sea. Simulations of an aquifer subject to semi-diurnal tides and constant waves acting on a sloping beach face were conducted using SEAWAT-2005 combined with PHT3D v2.10. Tidal amplitude (A) and wave height (H-rms) varying from 0.25 to 0.75 m and 1 to 2 m, respectively, were examined. Results show that tides and waves modify the subsurface discharge pathway of land-derived nutrients by changing the nearshore groundwater flow dynamics. More importantly, the oceanic forcing impacts nutrient cycling as it causes significant seawater exchange (along with dissolved O-2 and organic matter) across the aquifer-ocean interface. Although steady wave forcing caused higher seawater influx, tides led to greater seawater-freshwater mixing in the nearshore aquifer and subsequently greater transformation of land-derived nutrients. Nutrient processing was strongly controlled by the availability and reactivity of marine dissolved organic matter (DOM) as its degradation consumed O-2, released inorganic N and P, and altered redox conditions in the salt-freshwater mixing zones. For the conditions and reaction network simulated, nutrient regeneration by marine DOM degradation was independent of the seawater-freshwater mixing intensity, and therefore was greatest for the wave case due to the high seawater influx. For simulations without marine DOM considered, NO3- discharge to the sea increased by 32% for the tidal case (A = 0.5 m) compared to only 13% and 8% for the wave (H-rms = 1 m) and no oceanic forcing cases. With labile marine DOM considered, the NO3- discharge decreased by 90% relative to the land-derived flux for the tidal case (A = 0.5 m). For all simulations PO43- removal was high due to its adsorption to Fe oxide minerals. The model enables evaluation of the complex coupled physical-biogeochemical processes controlling nutrient loading to the sea via submarine groundwater discharge in dynamic coastal environments. (C) 2014 Elsevier Ltd. All rights reserved.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

anwar.pdf

Type

Publisher's Version

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

restricted

Size

3.66 MB

Format

Adobe PDF

Checksum (MD5)

aff9af56adb6d750a0c04ff3064fb7f2

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés