Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. High density experiments in TCV ohmically heated and L-mode plasmas
 
research article

High density experiments in TCV ohmically heated and L-mode plasmas

Kirneva, N A
•
Behn, R
•
Canal, G P
Show more
2015
Plasma Physics and Controlled Fusion

Recent experiments have been performed on the Tokamak a configuration variable (TCV) to investigate the confinement properties of high density plasmas and the mechanism behind the density limit. In a limiter configuration with plasma elongation kappa = 1.3-1.4 and triangularity delta = 0.2-0.3 the operational density range has been extended up to 0.65 of the Greenwald density at I-p = 200 kA (q(95) = 3.7) and even to the Greenwald value at low plasma current I-p = 110 kA (q(95) = 7). A transition from the linear to the saturated ohmic confinement regime is observed at high density similar to 0.4n(GW). A further density increase leads to sawtooth stabilization and is accompanied by a decrease of the energy and particle confinement times. The development of the disruption at the density limit was preceded by sawtooth stabilization. It is shown that electron cyclotron heating leads to the prevention of sawtooth stabilization and then to the increase of the density limit value.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

0741-3335_57_2_025002.pdf

Access type

openaccess

Size

3.66 MB

Format

Adobe PDF

Checksum (MD5)

34b1c4f24079bbfda0ebccc36a8ab23b

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés