Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Online performance guarantees for sparse recovery
 
conference paper not in proceedings

Online performance guarantees for sparse recovery

Giryes, Raja
•
Cevher, Volkan  orcid-logo
2011
2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)

A K*-sparse vector x* ∈ RN produces measurements via linear dimensionality reduction as u = Φx* +n, where Φ ∈ RM×N (M <; N), and n ∈ RM consists of independent and identically distributed, zero mean Gaussian entries with variance σ2. An algorithm, after its execution, determines a vector x̃ that has K-nonzero entries, and satisfies ||u - Φx̃|| ≤ ϵ. How far can x̃ be from x*? When the measurement matrix Φ provides stable embedding to 2K-sparse signals (the so-called restricted isometry property), they must be very close. This paper therefore establishes worst-case bounds to characterize the distance ||x̃- x*|| based on the online meta information. These bounds improve the pre-run algorithmic recovery guarantees, and are quite useful in exploring various data error and solution sparsity trade-offs. We also evaluate the performance of some sparse recovery algorithms in the context of our bound.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

05946908.pdf

Access type

openaccess

Size

140.33 KB

Format

Adobe PDF

Checksum (MD5)

a76d3e7a91cdbb2b44120d62488e9448

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés