Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Student works
  4. Geostatistical modelling for the monitoring of environmental-related endemic diseases: Application to the distribution of schistosomiasis in Burkina Faso
 
master thesis

Geostatistical modelling for the monitoring of environmental-related endemic diseases: Application to the distribution of schistosomiasis in Burkina Faso

Hafiz, Laurent
2014

The increased interest of reducing the infection rates of neglected tropical diseases like schistosomiasis in the world has raised the necessity of developing epidemiological monitoring techniques, in order to target specific areas where the risk of infection are at highest. The aim of this project was to produce infection probability maps of the urinary schistosomiasis, caused by the parasite S.haematobium, in order to identify high risk zones where targeted interventions could be undertaken in Burkina Faso. These maps were produced thanks to Bayesian analysis techniques, using geostatistical generalized linear models. The predictions were effectuated thanks to 247 community level infection prevalence data collected from the published literature, using environmental predictors as the NDVI, population density, elevation, mean temperature, mean decadal rainfall estimates and a mean dry-season period time. The predicted results showed that prevalence rates were at highest in the northern part of the country, with a tendency to decrease in a homogeneous way to the South. The absence of heterogeneous covariates, explaining more localized environmental information like distances to water bodies or mobility information, prevented the geostatistical model to explain the local variations in S.haematobium prevalence rates. These could be integrated in the model for future works to see their capability to explain heterogeneity in the prevalence rates observations.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Hafiz_Laurent2014.pdf

Access type

openaccess

Size

4.65 MB

Format

Adobe PDF

Checksum (MD5)

6236e04370868eab6817f245e7fc7f7b

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés