Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. A Practical Method for Measuring the Spatial Frequency Response of Light Field Cameras
 
conference paper

A Practical Method for Measuring the Spatial Frequency Response of Light Field Cameras

Firmenich, Damien  
•
Süsstrunk, Sabine  
•
Baboulaz, Loïc  
2014
Proceedings of the IEEE International Conference on Image Processing
IEEE International Conference on Image Processing

The spatial frequency response (SFR) is one of the most important and unbiased image quality measures of a digital camera. It evaluates to which extent a lens/sensor combination can resolve scene details. In this paper, we propose a simple and practical method to measure the SFR of microlens-based light field cameras. The particularity of such cameras resides in their ability to capture both spatial and angular information of the incoming light field thanks to an array of microlenses located in front of the sensor. Existing methods for measuring the SFR of conventional cameras are thus no longer applicable as the interaction between the main lens and the micro-lenses results in different resolving powers over the image plane that depend on the scene depths. By using a 3-dimensional target made of vertical lines printed on an inclined planar surface, we are able to measure the SFR across multiple depths in a single exposure. Our method allows SFR measurements from the raw light field itself as captured by the camera, and is thus independent of subsequent post-processing algorithms such as image reconstruction, digital refocusing or depth estimation. Our experimental results are consistent with theoretical bounds and reproducible.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

icip_paper_v2.pdf

Type

Publisher's Version

Version

Published version

Access type

openaccess

Size

312.8 KB

Format

Adobe PDF

Checksum (MD5)

7deac8b41c7d43d24f7d9926e90dbbfe

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés