Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Numerical life prediction of mechanical fatigue for hot forging tools
 
research article

Numerical life prediction of mechanical fatigue for hot forging tools

Mocellin, K.
•
Ferraro, M.
•
Velay, V.
Show more
2009
International Journal of Material Forming

In the forging industry, tools represent an important part in term of production and costs. Enhancing their life cycle is then a challenging issue. Several mechanical and thermal mechanisms are responsible for hot forging tools damage such as wear, thermal and mechanical fatigue. This work will be focused only on the mechanical fatigue life prediction for hot forging tools. Both experimental data analysis and numerical simulation will be discussed in this paper. The aim is to perform qualitative and quantitative indicators of mechanical fatigue. First, experimental data of fatigue tests are used to identify both plastic strain-based Manson Coffin and stress-based Basquin life laws for 2 tool steel grades. These laws are quite classical for fatigue prediction [1-4]. The half-life strain or stress amplitudes are usually used for their identification but these amplitudes are very expensive to obtain from a numerical point of view since it is well known that hot work martensitic steels present a continuous cyclic softening from the first cycle till the rupture. Therefore an important number of cycles have to be simulated to reach these mechanical parameters at half-life. For all theses reasons, an alternative methodology is used [4]. The fatigue life curves are established using the mechanical parameters that are identified from the first hysteresis loops of fatigue experiments. Comparisons are performed with the fatigue laws coming from more classical identification procedure performed at half life cycle. Good agreement is shown between experimental data and the new laws. A lower scattering is even observed in experimental results in comparison to the traditional fatigue laws. Then these new laws are introduced in the commercial software Forge® and are then applied to different industrial cases. A pretty good agreement is observed between predicted tool life and industrial values. © Springer/ESAFORM 2009.

  • Details
  • Metrics
Type
research article
DOI
10.1007/s12289-009-0537-2
Author(s)
Mocellin, K.
Ferraro, M.
Velay, V.
Logé, R.  
Rézaï-Aria, F.
Date Issued

2009

Published in
International Journal of Material Forming
Volume

2

Start page

129

End page

132

Subjects

Commercial software

•

Cyclic softening

•

Experimental data

•

Experimental data analysis

•

Fatigue damage

•

Fatigue life curve

•

Fatigue testing

•

Fatigue tests

•

First cycle

•

Forecasting

•

Forging industries

•

Forging machines

•

Forgings

•

Hot forging

•

Hot-work

•

Identification (control systems)

•

Identification procedure

•

Industry

•

Life cycle

•

Life predictions

•

Manson coffins

•

Martensitic steel

•

Mechanical fatigue

•

Mechanical parameters

•

Mechanisms

•

Number of cycles

•

Quantitative indicators

•

Steel grades

•

Stress amplitudes

•

Thermal mechanisms

•

Tool life

•

Tool lifetime

•

Tool steel

Editorial or Peer reviewed

REVIEWED

Written at

OTHER

EPFL units
LMTM  
Available on Infoscience
November 14, 2014
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/108777
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés