Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. EPFL thesis
  4. Modular Multilevel Converters with Integrated Split Battery Energy Storage
 
doctoral thesis

Modular Multilevel Converters with Integrated Split Battery Energy Storage

Vasiladiotis, Michail  
2014

The electric power grid is undergoing significant changes and updates nowadays, especially on a production and transmission level. Initially, the move towards a distributed generation in contrast to the existing centralized one implies a significant integration of renewable energy sources and electricity storage systems. In addition, environmental awareness and related concerns regarding pollutant emissions have given rise to a high interest in electrical mobility. Advanced power electronics interfacing systems are expected to play a key role in the development of such modern controllable and efficient large-scale grids and associated infrastructures. During the last decade, a global research and development interest has been stimulated in the field of modular multilevel conversion, due to the well-known offered advantages over conventional solutions in the medium- and high-voltage and power range. In the context of battery energy storage systems, the Modular Multilevel Converter (MMC) family exhibits an additional attractive feature, i.e., the capability of embedding such storage elements in a split manner, given the existence of several submodules operating at significantly lower voltages. This thesis deals with several technical challenges associated with Modular Multilevel Converters as well as their enhancement with battery energy storage elements. Initially, the accurate submodule capacitor voltage ripple estimation for a DC/AC MMC is derived analytically, avoiding any strong assumptions. This is beneficial for converter dimensioning purposes as well as for the implementation improvement of several control schemes, which have been proposed in the literature. The impact of unbalanced grid conditions on the operation and design of an MMC is then investigated, drawing important conclusions regarding the choice of line current control and required capacitive storage energy during grid faults. [...]

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

EPFL_TH6406.pdf

Access type

openaccess

Size

13.18 MB

Format

Adobe PDF

Checksum (MD5)

48d60089c607e125eae928dcf25f9c26

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés