Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. THEORY OF MECHANICAL-PROPERTIES OF CERAMIC-MATRIX COMPOSITES
 
research article

THEORY OF MECHANICAL-PROPERTIES OF CERAMIC-MATRIX COMPOSITES

Curtin, W. A.  
1991
Journal of the American Ceramic Society

A theory is presented to predict the pullout work and ultimate tensile strength of ceramic-matrix composite (CMC) materials tested under uniaxial tension as functions of the underlying material properties. By assuming that the fibers fracture independently and that global load redistribution occurs upon fiber fracture, the successive fragmentation of each fiber in the multifiber composite becomes identical to that of a single fiber embedded in a homogeneous large-failure-strain matrix, which has recently been solved exactly by the present author. From single-fiber fragmentation, the multifiber composite distribution of pullout lengths, work of pullout, and ultimate tensile strength are easily obtained. The trends in these composite properties as a function of the statistical fiber strength, the fiber radius and fill fraction, and the sliding resistance-tau-between the fibers and the matrix easily emerge from this approach. All these properties are proportional to a characteristic gauge length-delta-c and/or the associated characteristic stress-sigma-c, with proportionality constants depending only very weakly on the fiber Weibull modulus: the pullout lengths scale with delta-c, the work of pullout scales with sigma-c-delta-c, and the ultimate strength scales with sigma-c. The key length-delta-c is the generalization of the "critical length," defined by Kelly for single-strength fibers, to fibers with a statistical distribution of strengths. The theory also provides an interpretation of fracture-mirror measurements of pulled-out fiber strengths so that the in situ key strength sigma-c and Weibull modulus of the fibers can be determined directly. Comparisons of the theoretical predictions of the ultimate tensile strength to literature data on Nicalon/lithium aluminum silicate (LAS) composites generally show good agreement.

  • Details
  • Metrics
Type
research article
DOI
10.1111/j.1151-2916.1991.tb06852.x
Author(s)
Curtin, W. A.  
Date Issued

1991

Published in
Journal of the American Ceramic Society
Volume

74

Start page

2837

End page

2845

Subjects

behavior

•

fiber-reinforced ceramics

•

fracture

•

strength

Editorial or Peer reviewed

REVIEWED

Written at

OTHER

EPFL units
LAMMM  
Available on Infoscience
November 7, 2014
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/108398
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés