Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. DETERMINING FIBER STRENGTH VS GAUGE LENGTH
 
Loading...
Thumbnail Image
research article

DETERMINING FIBER STRENGTH VS GAUGE LENGTH

Curtin, W. A.  
1994
Polymer Composites

This paper concerns the gage length dependence of fiber strength as established by measuring the fiber fracture stress vs. fragment length in the succession of fragments, which occur in tension testing of a single-fiber composite (s.f.c.). For fibers with a strength distribution described by a Weibull modulus m, a plot of in (fragment fracture stress) us. In(actual fragment length) leads to the deduction of an apparent Weibull modulus m(app) congruent to 0.63 m, whereas the apparently less rigorous procedure of plotting In (fragment fracture stress) vs. Ln (average fragment length) allows for accurate assessment of the true Weibull modulus. The m(app) textless m behavior arising from the use of actual fragment lengths occurs because fragments in the s.f.c. are not random sections of the fiber, but rather sections which have effectively been proof-tested at a stress corresponding to the strength of last fiber breaking stress occurring in the entire sample length. Hence, the individual fragments appear stronger than random fiber sections, leading to an apparently smaller Weibull modulus. Such complications do not arise if only the average fragment length, or equivalently the location-independent total number of breaks, is considered. Computer simulations of the fragmentation process verify analytic estimates of the ratio of m(app)/m, and demonstrate the accuracy of using the average fragment length to assess fiber Weibull modulus.

  • Details
  • Metrics
Type
research article
DOI
10.1002/pc.750150612
Author(s)
Curtin, W. A.  
Date Issued

1994

Published in
Polymer Composites
Volume

15

Start page

474

End page

478

Subjects

fragmentation phenomenon

•

single-filament-composite

Peer reviewed

REVIEWED

Written at

OTHER

EPFL units
LAMMM  
Available on Infoscience
November 7, 2014
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/108287
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés