Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Crack growth in lamellar titanium aluminide
 
research article

Crack growth in lamellar titanium aluminide

Arata, J. J. M.
•
Kumar, K. S.
•
Curtin, W. A.  
Show more
2001
International Journal of Fracture

In-situ compact tension tests on binary lamellar titanium aluminide (TiAl) possessing the colony "polycrystalline" microstructure illustrate a range of damage phenomena and toughening mechanisms including crack nucleation across colony boundaries, plastic deformation of bridging ligaments, and multiple cracking within colonies. Here, the effects of relative lamellae misorientation and offsets between neighboring colonies on crack growth are investigated computationally through an idealized microstructure of multiple colonies. Within each colony, the brittle Ti3Al lamellae are represented as parallel planes of comparatively low toughness embedded in a matrix of ductile TiAl lamellae that are collectively modeled as an elastic-viscoplastic solid with higher fracture toughness. Plane strain calculations of crack growth are carried out on a compact tension geometry. The calculations are in good qualitative agreement with the in-situ observations, capturing many features of crack growth such as multiple microcrack nucleation and plastic deformation of residual ligaments. Experiments and numerical analyses show that changes in lamellar orientation and alignment across a colony boundary can contribute significantly to the fracture resistance. The numerical results demonstrate that the fracture resistance of these alloys is determined by an intricate interplay between matrix ductility, Ti3Al and TiAl fracture toughnesses, and colony boundary toughness. This suggests the possibility of computationally-guided material optimization through microstructural control of these material properties.

  • Details
  • Metrics
Type
research article
DOI
10.1023/a:1012217617235
Author(s)
Arata, J. J. M.
Kumar, K. S.
Curtin, W. A.  
Needleman, A.
Date Issued

2001

Published in
International Journal of Fracture
Volume

111

Start page

163

End page

189

Subjects

behavior

•

beta-phase

•

deformation

•

fracture-resistance

•

numerical simulations

•

plasticity

•

solids

•

strain-rate

•

tial-alloy

•

void nucleation

Editorial or Peer reviewed

REVIEWED

Written at

OTHER

EPFL units
LAMMM  
Available on Infoscience
November 7, 2014
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/108277
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés