Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Probabilistic speed-density relationship for pedestrians based on data driven space and time representation
 
conference paper not in proceedings

Probabilistic speed-density relationship for pedestrians based on data driven space and time representation

Nikolic, Marija  
•
Bierlaire, Michel  
•
Farooq, Bilal  
2014
Swiss Transportation Research Conference

This paper proposes a mathematical framework that provides the detailed characterization of the pedestrian flow. It is specifically designed to address the heterogeneity of pedestrian population which is to be reflected through the pedestrian flow indicators. The key components of the presented work are: (i) data driven space discretization framework based on the Voronoi tessellations that allow pedestrian-oriented definition of density indicator; (ii) statistical and data driven approach to time aggregation, allowing for the pedestrian oriented definition of speed indicator; (iii) probabilistic model for speed-density relationship, so as to capture the empirically observed heterogeneity among pedestrians. The estimation and validation of the proposed model are performed on the basis of a pedestrian tracking input. Data is collected in a Lausanne railway station where a large-scale network of cameras has been installed to automatically locate and track thousands of pedestrians. Additionally, the performance provided by this methodology is compared with the well-accepted models published in the literature against empirical data with the aim at improving research on the pedestrian flow characterization.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

NikBieFar_STRC2014.pdf

Access type

openaccess

Size

1.29 MB

Format

Adobe PDF

Checksum (MD5)

c281aa00660f8d7b1a9c1572948e29c9

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés