Projective Dynamics: Fusing Constraint Projections for Fast Simulation
We present a new method for implicit time integration of physical systems. Our approach builds a bridge between nodal Finite Element methods and Position Based Dynamics, leading to a simple, efficient, robust, yet accurate solver that supports many different types of constraints. We propose specially designed energy potentials that can be solved efficiently using an alternating optimization approach. Inspired by continuum mechanics, we derive a set of continuum-based potentials that can be efficiently incorporated within our solver. We demonstrate the generality and robustness of our approach in many different applications ranging from the simulation of solids, cloths, and shells, to example-based simulation. Comparisons to Newton-based and Position Based Dynamics solvers highlight the benefits of our formulation.
pubs_teaser.png
Thumbnail
openaccess
copyright
245.54 KB
PNG
5770ee3dda9d2c0f29a5962b08979bd5
paper.pdf
postprint
openaccess
copyright
17.33 MB
Adobe PDF
c2fd9dfb12c24d94fda1b60acf4274e3