Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Speciation and reactivity of uranium products formed during in situ bioremediation in a shallow alluvial aquifer
 
research article

Speciation and reactivity of uranium products formed during in situ bioremediation in a shallow alluvial aquifer

Alessi, Daniel S.  
•
Lezama-Pacheco, Juan S.
•
Janot, Noemie
Show more
2014
Environmental Science & Technology

In this study, we report the results of in situ U(VI) bioreduction experiments at the Integrated Field Research Challenge site in Rifle, Colorado, USA. Columns filled with sediments were deployed into a groundwater well at the site and, after a period of conditioning with groundwater, were amended with a mixture of groundwater, soluble U(VI), and acetate to stimulate the growth of indigenous microorganisms. Individual reactors were collected as various redox regimes in the column sediments were achieved: (i) during iron reduction, (ii) just after the onset of sulfate reduction, and (iii) later into sulfate reduction. The speciation of U retained in the sediments was studied using X-ray absorption spectroscopy, electron microscopy and chemical extractions. Circa 90% of the total uranium was reduced to U(IV) in each reactor. Noncrystalline U(IV) comprised about two-thirds of the U(IV) pool, across large changes in microbial community structure, redox regime, total uranium accumulation, and reaction time. A significant body of recent research has demonstrated that noncrystalline U(IV) species are more suceptible to remobilization and reoxiation than crystalline U(IV) phases such as uraninite. Our results highlight the importance of considering noncrystalline U(IV) formation across a wide range of aquifer parameters when designing in situ remediation plans.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

es502701u.pdf

Access type

openaccess

Size

3.85 MB

Format

Adobe PDF

Checksum (MD5)

52e901aee8c16bf036e9f9e6499df566

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés