Modeling enzymatic hydrolysis of lignocellulosic substrates using fluorescent confocal microscopy II: Pretreated biomass

In this study, we extend imaging and modeling work that was done in Part I of this report for a pure cellulose substrate (filter paper) to more industrially relevant substrates (untreated and pretreated hardwood and switchgrass). Using confocal fluorescence microscopy, we are able to track both the structure of the biomass particle via its autofluorescence, and bound enzyme from a commercial cellulase cocktail supplemented with a small fraction of fluorescently labeled Trichoderma reseii Cel7A. Imaging was performed throughout hydrolysis at temperatures relevant to industrial processing (50°C). Enzyme bound predominantly to areas with low autofluorescence, where structure loss and lignin removal had occurred during pretreatment; this confirms the importance of these processes for successful hydrolysis. The overall shape of both untreated and pretreated hardwood and switchgrass particles showed little change during enzymatic hydrolysis beyond a drop in autofluorescence intensity. The permanence of shape along with a relatively constant bound enzyme signal throughout hydrolysis was similar to observations previously made for filter paper, and was consistent with a modeling geometry of a hollowing out cylinder with widening pores represented as infinite slits. Modeling estimates of available surface areas for pretreated biomass were consistent with previously reported experimental results. © 2014 Wiley Periodicals, Inc.


Published in:
Biotechnology and Bioengineering, 112, 1, 32-42
Year:
2015
Publisher:
Wiley-Blackwell
ISSN:
0006-3592
Laboratories:




 Record created 2014-09-23, last modified 2018-12-03


Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)