Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Towards Enabling Probabilistic Databases for Participatory Sensing
 
conference paper

Towards Enabling Probabilistic Databases for Participatory Sensing

Nguyen, Quoc Viet Hung  
•
Sathe, Saket  
•
Duong, Chi Thang  
Show more
2014
10th IEEE International Conference on Collaborative Computing: Networking, Applications and Worksharing
10th IEEE International Conference on Collaborative Computing: Networking, Applications and Worksharing

Participatory sensing has emerged as a new data collection paradigm, in which humans use their own devices (cell phone accelerometers, cameras, etc.) as sensors. This paradigm enables to collect a huge amount of data from the crowd for world-wide applications, without spending cost to buy dedicated sensors. Despite of this benefit, the data collected from human sensors are inherently uncertain due to no quality guarantee from the participants. Moreover, the participatory sensing data are time series that not only exhibit highly irregular dependencies on time, but also vary from sensor to sensor. To overcome these issues, we study in this paper the problem of creating probabilistic data from given (uncertain) time series collected by participatory sensors. We approach the problem in two steps. In the first step, we generate probabilistic times series from raw time series using a dynamical model from the time series literature. In the second step, we combine probabilistic time series from multiple sensors based on the mutual relationship between the reliability of the sensors and the quality of their data. Through extensive experimentation, we demonstrate the efficiency of our approach on both real data and synthetic data.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

probSensor_paper.pdf

Access type

openaccess

Size

473.15 KB

Format

Adobe PDF

Checksum (MD5)

4c1e1b9ba846f09f5d16fa84fce467b9

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés