Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Understanding the Phase Behavior of Coarse-Grained Model Lipid Bilayers through Computational Calorimetry
 
research article

Understanding the Phase Behavior of Coarse-Grained Model Lipid Bilayers through Computational Calorimetry

Rodgers, J. M.
•
Sorensen, J.
•
de Meyer, F. J. M.
Show more
2012
The Journal of Physical Chemistry B

We study the phase behavior of saturated lipids as a function of temperature and tail length for two coarse-grained models: the soft-repulsive model typically employed with dissipative particle dynamics (DPD) and the MARTINI model. We characterize the simulated transitions through changes in structural properties, and we introduce a computational method to monitor changes in enthalpy, as is done experimentally with differential scanning calorimetry. The lipid system experimentally presents four different bilayer phases - subgel, gel, ripple, and fluid - and the DPD model describes all of these phases structurally while MARTINI describes a single order-disorder transition between the gel and the fluid phases. Given both models' varying degrees of success in displaying accurate structural and thermodynamic signatures, there is an overall satisfying extent of agreement for the coarse-grained models. We also study the lipid dynamics displayed by these models for the various phases, discussing this dynamics with relation to fidelity to experiment and computational efficiency. © 2012 American Chemical Society.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Rodgers-2012-Understanding the Ph.pdf

Access type

openaccess

Size

1.46 MB

Format

Adobe PDF

Checksum (MD5)

7b09ab557d5a7f203079c3aa790f5b2d

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés