Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Doping of Alkali, Alkaline-Earth, and Transition Metals in Covalent-Organic Frameworks for Enhancing CO2 Capture by First-Principles Calculations and Molecular Simulations
 
research article

Doping of Alkali, Alkaline-Earth, and Transition Metals in Covalent-Organic Frameworks for Enhancing CO2 Capture by First-Principles Calculations and Molecular Simulations

Lan, J. H.
•
Cao, D. P.
•
Wang, W. C.
Show more
2010
Acs Nano

We use the multiscale simulation approach, which combines the first-principles calculations and grand canonical Monte Carlo simulations, to comprehensively study the doping of a series of alkali (Li, Na, and K), alkaline-earth (Be, Mg, and Ca), and transition (Sc and Ti) metals in nanoporous covalent organic frameworks (COFs), and the effects of the doped metals on CO2 capture. The results indicate that, among all the metals studied, Li, Sc, and Ti can bind with COFs stably, while Be, Mg, and Ca cannot, because the binding of Be, Mg, and Ca with COFs is very weak. Furthermore, Li, Sc, and Ti can improve the uptakes of CO2 in COFs significantly. However, the binding energy of a CO2 molecule with Sc and Ti exceeds the lower limit of chemisorptions and, thus, suffers from the difficulty of desorption. By the comparative studies above, it is found that Li is the best surface modifier of COFs for CO2 capture among all the metals studied. Therefore, we further investigate the uptakes of CO2 in the Li-doped COFs. Our simulation results show that at 298 K and 1 bar, the excess CO2 uptakes of the Li-doped COF-102 and COF-105 reach 409 and 344 mg/g, which are about eight and four times those in the nondoped ones, respectively. As the pressure increases to 40 bar, the CO2 uptakes of the Li-doped COF-102 and COF-105 reach 1349 and 2266 mg/g at 298 K, respectively, which are among the reported highest scores to date. In summary, doping of metals in porous COFs provides an efficient approach for enhancing CO2 capture. © 2010 American Chemical Society.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Lan-2010-Doping of Alkali, Al.pdf

Access type

openaccess

Size

812.31 KB

Format

Adobe PDF

Checksum (MD5)

cb182069133562ec7ff7c450fac033a6

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés