Identification of Tyrosine-Phosphorylated Peptides Using Cold Ion Spectroscopy

The accurate and unambiguous detection of post-translational modifications in proteins and peptides remains a challenging task. We report here the use of cold ion spectroscopy for the identification of phosphorylated tyrosine residues in peptides. This approach employs the wavelength-specific UV fragmentation of cryogenically cooled protonated peptides in the gas phase. In addition to the appearance of specific photofragments, the phosphorylation of tyrosine induces large spectral shifts of the peptide electronic band origins. Quantum chemical calculations and experiments together suggest a certain generality of the use of such shifts in the spectroscopic identification of phosphotyrosines. The enhanced selectivity offered by the joint application of wavelength-specific fragmentation and mass spectrometry of cold molecules can also be used in the identifications of aromatic residues in protonated peptides and, potentially, of other UV-absorbing groups in a variety of large polyatomic ions.


Published in:
Journal of the American Chemical Society, 140624084934005
Year:
2014
Publisher:
Washington, Amer Chemical Soc
ISSN:
1520-5126
Laboratories:


Note: The status of this file is: EPFL only


 Record created 2014-07-01, last modified 2018-03-17

Publisher's version:
Download fulltext
PDF

Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)