Nanocrystalline Rutile Electron Extraction Layer Enables Low-Temperature Solution Processed Perovskite Photovoltaics with 13.7% Efficiency

We demonstrate low-temperature (70 degrees C) solution processing of TiO2/CH3NH3PbI3 based solar cells, resulting in impressive power conversion efficiency (PCE) of 13.7%. Along with the high efficiency, a strikingly high open circuit potential (V-OC) of 1110 mV was realized using this low-temperature chemical bath deposition approach. To the best of our knowledge, this is so far the highest V-OC value for solution-processed TiO2/CH3NH3PbI3 solar cells. We deposited a nanocrystalline TiO2 (rutile) hole-blocking layer on a fluorine-doped tin oxide (FTO) conducting glass substrate via hydrolysis of TiCl4 at 70 degrees C, forming the electron selective contact with the photoactive CH3NH3PbI3 film. We find that the nanocrystalline rutile TiO2 achieves a much better performance than a planar TiO2 (anatase) film prepared by high-temperature spin coating of TiCl4, which produces a much lower PCE of 3.7%. We attribute this to the formation of an intimate junction of large interfacial area between the nanocrystalline rutile TiO2 and the CH3NH3PbI3 layer, which is much more effective in extracting photogenerated electrons than the planar anatase film. Since the complete fabrication of the solar cell is carried out below 100 degrees C, this method can be easily extended to plastic substrates.

Published in:
Nano Letters, 14, 5, 2591-2596
Washington, American Chemical Society

 Record created 2014-06-23, last modified 2018-12-03

Rate this document:

Rate this document:
(Not yet reviewed)