Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Optimization of an Airborne Wind Energy System Using Constrained Gaussian Processes
 
conference paper

Optimization of an Airborne Wind Energy System Using Constrained Gaussian Processes

Diwale, Sanket Sanjay  
•
Lymperopoulos, Ioannis  
•
Jones, Colin  
2014
2014 IEEE Conference on Control Applications (CCA)
IEEE Multi-Conference on Systems and Control

Wind resources tend to be significantly stronger and more consistent with increasing altitude. This effect creates a potential for power generation that can be reaped by an Airborne Wind Energy system positioned at elevations exceeding the height of conventional wind turbines. A frequent design for such a system includes a flying airfoil tethered to a ground station. The station can be equipped with a power generator or for the application considered here mounted to a sea vessel. We demonstrate a data based method that can maximize the towing force of such a system by optimizing a low level tracking controller at the presence of constraints. We utilise Gaussian Processes to learn the mapping from the set points of the controller to both the objective and the constraint function.We then formulate a chance - constrained optimization problem that takes into consideration uncertainty in the learned functions. The probabilistic objective function is transformed into a deterministic acquisition function which indicates set points with high probability of improving the current optimum and the constraint function is penalized in regions of high uncertainty to ensure feasibility. Simulation studies show that we can find optimal set points for the controller without the use of significant assumptions on model dynamics while respecting the unknown constraint function.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

GP_Constrained.pdf

Access type

openaccess

Size

1.77 MB

Format

Adobe PDF

Checksum (MD5)

c289b207b66ca79f9186433d6799bf55

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés