The antagonistic and synergistic effects of temperature during solar disinfection of synthetic secondary effluent
A 4-factor, multilevel, full factorial design of 240 experiments was performed in order to investigate the effect of temperature on the inactivation efficiency of spiked Escherichia coli in simulated solar disinfection of a synthetic secondary effluent. The initial population of the microorganisms was 103, 104, 105 and 106 CFU/mL, the exposure time 1, 2,3 and 4h, the treatment temperature 20, 30, 40, 50 and 60 degrees C and the sunlight intensity 0, 800 and 1200 W/m(2). Radical changes in bacterial behavior, process efficiency and remaining populations were observed, while treating effluents in discreet temperatures. Elevating treatment temperature from 20 to 40 degrees C drastically impaired disinfection. Thermal inactivation with no regrowth predominated at 50 degrees C and total inactivation of microorganisms was observed at 60 degrees C in nonirradiated samples. Irradiation at 800 and 1200 W/m2 much increased inactivation efficiency, especially at 50 and 60 degrees C, proving sensitive light-temperature synergy at those temperatures. Total inactivation was achieved within 4h under a range of treatment conditions, including all samples at 1200 W/m(2), or 60 degrees C samples at 800 W/m(2). Also, 99.9-100% efficiencies and final population below 1000 CFU/100 mL were obtained at 800 W/m(2) and temperatures of 50 degrees C and above. Treatment time, temperature and intensity are the critical parameters for the disinfection process, while initial population is insignificant for removal efficiency. An explanation of the mechanism of the process as well as a general linear model predicting the outcome of the experiments is also suggested. (C) 2014 Elsevier B.V. All rights reserved.
The antagonisticandsynergisticeffects.pdf
openaccess
3.85 MB
Adobe PDF
269a569aebc74de0ed89f12bb116fc69