Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Ni2P enhances the activity and durability of the Pt anode catalyst in direct methanol fuel cells
 
research article

Ni2P enhances the activity and durability of the Pt anode catalyst in direct methanol fuel cells

Chang, Jinfa
•
Feng, Ligang  
•
Liu, Changpeng
Show more
2014
Energy & Environmental Science

Pt is the state-of-the-art anode catalyst in direct methanol fuel cells. Here we report that Ni2P promotes the activity and stability of Pt in electrochemical methanol oxidation. Nanoparticles of Ni2P and Pt were co-deposited on a carbon support and their activity in electrochemical methanol oxidation was measured by cyclic voltammetry. Among all Pt-Ni2P/C catalysts, the sample with a 30 wt% loading of Ni2P exhibits the highest electrochemical surface area and activity. The activity of the Pt-Ni2P/C-30% catalyst is significantly higher than that of Pt/C, Ni-promoted Pt/C, and P-promoted Pt/C catalysts, revealed by cyclic voltammetry, chronoamperometry, and electrochemical impedance spectroscopy. Accordingly to X-ray photoelectron spectroscopy, there is a partial electron transfer from Ni2P to Pt, which might be an origin of the enhanced catalytic activity of the Pt/Ni2P bimetallic catalyst. The Pt- Ni2P/C-30% was integrated into a direct methanol fuel cell; this fuel cell exhibits a maximum power density of 65 mW cm(-2), more than twice of that of an analogous fuel cell using Pt/C as the anode catalyst. The Pt-Ni2P/C-30%- integrated direct methanol fuel cell has also the highest discharge stability among a series of fuel cells with different Pt-based anode catalysts.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

main text-Hu rev.pdf

Type

Postprint

Version

http://purl.org/coar/version/c_ab4af688f83e57aa

Access type

openaccess

Size

530.83 KB

Format

Adobe PDF

Checksum (MD5)

cbe65a83518ced9abaa6b466b817e930

Loading...
Thumbnail Image
Name

c4ee00100a1-ESI.pdf

Access type

openaccess

Size

1.09 MB

Format

Adobe PDF

Checksum (MD5)

cd378e1c6c5658d5fc372fa652ef0201

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés