Effect of silane coupling agent on the morphology, structure, and properties of poly(vinylidene fluoride-trifluoroethylene)/BaTiO3 composites

Micron- and submicron-sized barium titanate (BaTiO3) particles, untreated and surface modified with aminopropyl triethoxy silane, were incorporated in poly(vinylidene fluoride-trifluoroethylene) to fabricate composites with up to 60 vol% of ceramic phase. The morphology and structure of solvent cast and compression-molded films, and their thermal, viscoelastic, and dielectric properties were investigated. When surface-modified BaTiO3 was used, it was possible to decrease both the viscoelastic and the dielectric losses of highly filled solvent cast films, while their storage modulus and relative permittivity either increased or remained equal, owing to reduced porosity and improved matrix-filler compatibility. The effect of BaTiO3 surface modification on the morphology of compression-molded films was less marked, leading to unchanged viscoelastic properties, and lower permittivity and dielectric losses. For all composites the frequency dependency of the dielectric properties at low frequencies was suppressed with modified BaTiO3.


Publié dans:
Journal of Materials Science, 49, 13, 4552-4564
Année
2014
Publisher:
Springer Verlag
ISSN:
0022-2461
Laboratoires:




 Notice créée le 2014-05-23, modifiée le 2019-03-16

Postprint:
Télécharger le document
PDF

Évaluer ce document:

Rate this document:
1
2
3
 
(Pas encore évalué)