Journal article

Moduli spaces of toric manifolds

We construct a distance on the moduli space of symplectic toric manifolds of dimension four. Then we study some basic topological properties of this space, in particular, path-connectedness, compactness, and completeness. The construction of the distance is related to the Duistermaat-Heckman measure and the Hausdorff metric. While the moduli space, its topology and metric, may be constructed in any dimension, the tools we use in the proofs are four-dimensional, and hence so is our main result.


Related material