Journal article

Hole Staggering Effect on the Cooling Performance of Narrow Impingement Channels Using the Transient Liquid Crystal Technique

This study examines experimentally the cooling performance of narrow impingement channels as could be cast-in in modern turbine airfoils. Full surface heat transfer coefficients are evaluated for the target plate and the sidewalls of the channels using the transient liquid crystal technique. Several narrow impingement channel geometries, consisting of a single row of five cooling holes, have been investigated composing a test matrix of nine different models. The experimental data are analyzed by means of various post-processing procedures aiming to clarify and quantify the effect of cooling hole offset position from the channel centerline on the local and average heat transfer coefficients and over a range of Reynolds numbers (11,100–86,000). The results indicated a noticeable effect of the jet pattern on the distribution of convection coefficients as well as similarities with conventional multi-jet impingement cooling systems.


Related material


EPFL authors

The server encountered an error while dealing with your request.

The system administrators have been alerted.

In case of doubt, please contact