Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Large eddy simulation of particulate flow inside a differentially heated cavity
 
research article

Large eddy simulation of particulate flow inside a differentially heated cavity

Bosshard, Christoph  
•
Dehbi, Abdelouahab
•
Deville, Michel  
Show more
2014
Nuclear Engineering And Design

In nuclear safety, some severe accident scenarios lead to the presence of fission products in aerosol form in the closed containment atmosphere. It is important to understand the particle depletion process to estimate the risk of a release of radioactivity to the environment should a containment break occur. As a model for the containment, we use the three-dimensional differentially heated cavity problem. The differentially heated cavity is a cubical box with a hot wall and a cold wall on vertical opposite sides. On the other walls of the cube we have adiabatic boundary conditions. For the velocity field the no-slip boundary condition is applied. The flow of the air in the cavity is described by the Boussinesq equations. The method used to simulate the turbulent flow is the large eddy simulation (LES) where the dynamics of the large eddies is resolved by the computational grid and the small eddies are modelled by the introduction of subgrid scale quantities using a filter function. Particle trajectories are computed using the Lagrangian particle tracking method, including the relevant forces (drag, gravity, thermophoresis). Four different sets with each set containing one million particles and diameters of 10 mu m, 15 mu m, 25 mu m and 35 mu m are simulated. Simulation results for the flow field and particle sizes from 15 mu m to 35 mu m are compared to previous results from direct numerical simulation (DNS). The integration time of the LES is three times longer and the smallest particles have been simulated only in the LES. Particle statistics in the LES and the DNS were similar and the settling rates were practically identical. It was found that for this type of flow no model was necessary for the influence of the unresolved flow scales on the particle motions. This can be explained by the dominant nature of gravity settling compared to turbophoresis which is negligible for the particle sizes of the present study. (C) 2013 Elsevier B.V. All rights reserved.

  • Details
  • Metrics
Type
research article
DOI
10.1016/j.nucengdes.2013.12.035
Web of Science ID

WOS:000331424000014

Author(s)
Bosshard, Christoph  
Dehbi, Abdelouahab
Deville, Michel  
Leriche, Emmanuel  
Soldati, Alfredo
Date Issued

2014

Publisher

Elsevier

Published in
Nuclear Engineering And Design
Volume

267

Start page

154

End page

163

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
LIN  
Available on Infoscience
April 2, 2014
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/102429
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés