Infoscience

Journal article

Temporal solitons in optical microresonators

Temporal dissipative solitons in a continuous-wave laser-driven nonlinear optical microresonator were observed. The solitons were generated spontaneously when the laser frequency was tuned through the effective zero detuning point of a high-Q resonance, which led to an effective red-detuned pumping. Transition to soliton states were characterized by discontinuous steps in the resonator transmission. The solitons were stable in the long term and their number could be controlled via pump-laser detuning. These observations are in agreement with numerical simulations and soliton theory. Operating in the single-soliton regime allows the continuous output coupling of a femtosecond pulse train directly from the microresonator. This approach enables ultrashort pulse syntheses in spectral regimes in which broadband laser-gain media and saturable absorbers are not available. In the frequency domain the single-soliton states correspond to low-noise optical frequency combs with smooth spectral envelopes, critical to applications in broadband spectroscopy, telecommunications, astronomy and low noise microwave generation.

Fulltext

Related material