Abstract

We investigate the consequences of broken translational symmetry in the superconductor FeSexTe1-x using angle-resolved photoemission spectroscopy. We find that the intensity does not follow the periodicity dictated by the crystal structure, owing to the form of the perturbing potential and the symmetries of the Fe d orbitals. Their interplay leads to substantial differences in the orbital character and spectral features observed at nominally equivalent locations in the reciprocal space. Such differences cannot be accounted for by the usual dipole matrix element effects and are due instead to the structure factor, which must be explicitly considered whenever more than one atom is present in the unit cell.

Details