Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Design and Implementation of a Range-Based Formation Controller for Marine Robots
 
conference paper

Design and Implementation of a Range-Based Formation Controller for Marine Robots

Soares, Jorge Miguel  
•
Aguiar, A. Pedro
•
Pascoal, António M.
Show more
Armada, Manuel A.
•
Sanfeliu, Alberto
Show more
2014
ROBOT2013: First Iberian Robotics Conference
ROBOT2013: First Iberian Robotics Conference

There is considerable worldwide interest in the use of groups of autonomous marine vehicles to carry our challenging mission scenarios, of which marine habitat mapping of complex, non-structured environments is a representative example. Relative positioning and formation control becomes mandatory in many of the missions envisioned, which require the concerted operation of multiple marine vehicles carrying distinct, yet complementary sensor suites. However, the constraints placed by the underwater medium make it hard to both communicate and localise the vehicles, even in relation to each other, let alone maintain them in a formation. As a contribution to overcoming some of these problems, this paper deals with the problem of keeping an autonomous marine vehicle in a moving triangular formation with respect to two leader vehicles. Simple feedback laws are derived to drive a controlled vehicle to its intended position in the formation using acoustic ranges obtained to the leading vehicles with no knowledge of the formation path. The paper discusses the implementation of this solution in the MEDUSA class of autonomous marine vehicles operated by IST and describes the results of trials with these vehicles exchanging information and ranges over an acoustic network.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

robot2013.pdf

Type

Postprint

Version

http://purl.org/coar/version/c_ab4af688f83e57aa

Access type

openaccess

License Condition

copyright

Size

1.11 MB

Format

Adobe PDF

Checksum (MD5)

a2252cc74ec84e812558d33a75eef5c3

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés