Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Enhancing statistical performance of data-driven controller tuning via L2-regularization
 
research article

Enhancing statistical performance of data-driven controller tuning via L2-regularization

Formentin, Simone  
•
Karimi, Alireza  
2014
Automatica

Noniterative data-driven techniques are design methods that allow optimal feedback control laws to be derived from input-output (I/O) data only, without the need of a model of the process. A drawback of these methods is that, in their standard formulation, they are not statistically efficient. In this paper, it is shown that they can be reformulated as L2-regularized optimization problems, by keeping the same assumptions and features, such that their statistical performance can be enhanced using the same identification data set. A convex optimization method is also introduced to find the regularization matrix. The proposed strategy is finally tested on a benchmark example in digital control system design.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

L2.pdf

Access type

openaccess

Size

4.21 MB

Format

Adobe PDF

Checksum (MD5)

acd15feaf6172e2f0f4dd080eb4c125f

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés