Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Mechanisms of spindle positioning: cortical force generators in the limelight
 
research article

Mechanisms of spindle positioning: cortical force generators in the limelight

Kotak, Sachin  
•
Gönczy, Pierre
2013
Current Opinion In Cell Biology

Correct positioning of the spindle governs placement of the cytokinesis furrow and thus plays a crucial role in the partitioning of fate determinants and the disposition of daughter cells in a tissue. Converging evidence indicates that spindle positioning is often dictated by interactions between the plus-end of astral microtubules that emanate from the spindle poles and an evolutionary conserved cortical machinery that serves to pull on them. At the heart of this machinery lies a ternary complex (LIN-5/GPR-1/2/G alpha in Caenorhabditis elegans and NuMA/LGN/G alpha i in Homo sapiens) that promotes the presence of the motor protein dynein at the cell cortex. In this review, we discuss how the above components contribute to spindle positioning and how the underlying mechanisms are precisely regulated to ensure the proper execution of this crucial process in metazoan organisms

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Review Kotak and Gönczy.pdf

Access type

openaccess

Size

1.45 MB

Format

Adobe PDF

Checksum (MD5)

1c61018a9cab5d8235b706f9ebc451da

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés