Definition and quantification of acute inflammatory white matter injury in the immature brain by MRI/MRS at high magnetic field

Background: Intrauterine growth restriction (IUGR) is a major risk factor for both perinatal and long-term morbidity. Bovine lactoferrin (bLf) is a major milk glycoprotein considered as a pleiotropic functional nutrient. The impact of maternal supplementation with bLf on IUGR-induced sequelae, including inadequate growth and altered cerebral development, remains unknown. Methods: IUGR was induced through maternal dexamethasone infusion (100 μg/kg during last gestational week) in rats. Maternal supplementation with bLf (0.85% in food pellet) was provided during both gestation and lactation. Pup growth was monitored, and Pup brain metabolism and gene expression were studied using in vivo 1H NMR spectroscopy, quantitative PCR, and microarray in the hippocampus at postnatal day (PND)7. Results: Maternal bLf supplementation did not change gestational weight but increased the birth body weight of control pups (4%) with no effect on the IUGR pups. Maternal bLf supplementation allowed IUGR pups to recover a normalized weight at PND21 (weaning) improving catch-up growth. Significantly altered levels of brain metabolites (γ-aminobutyric acid, glutamate, N-acetylaspartate, and N-acetylaspartylglutamate) and transcripts (brain-derived neurotrophic factor (BDNF), divalent metal transporter 1 (DMT-1), and glutamate receptors) in IUGR pups were normalized with maternal bLf supplementation. Conclusion: Our data suggest that maternal bLf supplementation is a beneficial nutritional intervention able to revert some of the IUGR-induced sequelae, including brain hippocampal changes.

Published in:
Pediatric Research, 75, 3, 415-423
New York, Nature Publishing Group

 Record created 2014-02-11, last modified 2019-06-04

Rate this document:

Rate this document:
(Not yet reviewed)