Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Reports, Documentation, and Standards
  4. A General Framework for Architecture Composability
 
report

A General Framework for Architecture Composability

Attie, Paul
•
Baranov, Eduard  
•
Bliudze, Simon  
Show more
2014

Architectures depict design principles, paradigms that can be understood by all, allow thinking on a higher plane and avoiding low-level mistakes. They provide means for ensuring correctness by construction by enforcing global properties characterizing the coordination between components. An architecture can be considered as an operator A that, applied to a set of components B, builds a composite component A(B) meeting a characteristic property P. Architecture composability is a basic and common problem faced by system designers. Consider two architectures A1, A2, enforcing respectively properties P1, P2 on a set of components B. That is, A1(B) and A2(B) satisfy respectively the properties P1 and P2. Is it possible to find an architecture A1 + A_2 such that the composite component (A1 + A2)(B) meets both P1 and P2? In this paper, we propose a formal and general framework for architecture composability based on an associative, commutative and idempotent architecture composition operator `+'. The main result is that if two architectures A1 and A2 enforce respectively state properties P1 and P2, the architecture A1 + A2 enforces the property P1 & P2, that is both invariants are preserved by architecture composition. We also discuss preservation of liveness properties of architecture composition. The presented results are illustrated by a running example and a case study.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

architectures-tr.pdf

Access type

openaccess

Size

573.24 KB

Format

Adobe PDF

Checksum (MD5)

2c81d78d91d8cede9491acbe137f3628

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés