Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Convergent Bounds for Stochastic Programs with Expected Value Constraints
 
research article

Convergent Bounds for Stochastic Programs with Expected Value Constraints

Kuhn, Daniel  
2009
Journal of Optimization Theory and Applications

This article describes a bounding approximation scheme for convex multistage stochastic programs (MSP) that constrain the conditional expectation of some decision-dependent random variables. Expected value constraints of this type are useful for modelling a decision maker’s risk preferences, but they may also arise as artifacts of stage-aggregation. We develop two finite-dimensional approximate problems that provide bounds on the (infinite-dimensional) original problem, and we show that the gap between the bounds can be made smaller than any prescribed tolerance. Moreover, the solutions of the approximate MSPs give rise to a feasible policy for the original MSP, and this policy’s optimality gap is shown to be smaller than the difference of the bounds. The considered problem class comprises models with integrated chance constraints and conditional value-at-risk constraints. No relatively complete recourse is assumed.

  • Details
  • Metrics
Type
research article
DOI
10.1007/s10957-008-9476-1
Author(s)
Kuhn, Daniel  
Date Issued

2009

Published in
Journal of Optimization Theory and Applications
Volume

141

Issue

3

Start page

597

End page

618

Subjects

Stochastic programming

•

Approximation

•

Bounds

•

Expected value constraints

•

Integrated chance constraints

Editorial or Peer reviewed

NON-REVIEWED

Written at

OTHER

EPFL units
RAO  
Available on Infoscience
January 21, 2014
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/100071
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés