Solvated radicals play an important role in many areas of chemistry, but to date, the nature of their interactions with polar solvent molecules lacks chemical interpretation. We present a computational quantum chemical analysis of the binding motives of binary complexes involving electron-poor and electron-rich radicals bound to water and hydrogen fluoride, considered here as model polar solvent molecules. By comparing the binding strengths of several open-shell and closed-shell complexes, in combination with natural localized molecular orbital analysis, we show that open-shell complexes can exhibit additional donor-acceptor interactions relative to analogous closed-shell systems. This may explain the unexpectedly large binding energies observed in some open-shell complexes. These exploratory results show that specific interactions in open-shell systems deserve more attention, and they imply that the quantum mechanical description of explicit solvent molecules needs to be considered carefully when designing simulation protocols for solvated radicals.