000195275 001__ 195275
000195275 005__ 20181114182340.0
000195275 020__ $$a978-1-4673-6455-3
000195275 0247_ $$2doi$$a10.1109/ISBI.2013.6556630
000195275 02470 $$2ISI$$a000326900100235
000195275 037__ $$aCONF
000195275 245__ $$aLinear Interpolation Of Biomedical Images Using A Data-Adaptive Kernel
000195275 269__ $$a2013
000195275 260__ $$aNew York$$bIEEE$$c2013
000195275 300__ $$a4
000195275 336__ $$aConference Papers
000195275 490__ $$aIEEE International Symposium on Biomedical Imaging
000195275 520__ $$aIn this work, we propose a continuous-domain stochastic model that can be applied to image data. This model is autoregressive, and accounts for Gaussian-type as well as for non-Gaussian-type innovations. In order to estimate the corresponding parameters from the data, we introduce two possible error criteria; namely, Gaussian maximum-likelihood, and least-squares autocorrelation fit. Exploiting the link between autoregressive models and spline approximation, we use our approach to adapt interpolation parameters to a given image. Our numerical results demonstrate that our adaptive approach yields higher SNR values compared to classical polynomial splines for the task of image scaling. They also indicate that our least-squares-based error criterion nearly achieves the oracle performance for parameter estimation, which provides further support to the practical relevance of our model.
000195275 6531_ $$aExponential splines
000195275 6531_ $$aimage interpolation
000195275 6531_ $$astochastic modeling
000195275 700__ $$0242489$$aKirshner, Hagai$$g194014
000195275 700__ $$aBourquard, Aurelien
000195275 700__ $$0245475$$aWard, John Paul$$g213487
000195275 700__ $$0240182$$aUnser, Michael$$g115227
000195275 7112_ $$aIEEE 10th International Symposium on Biomedical Imaging - From Nano to Macro (ISBI)$$cSan Francisco, CA$$dAPR 07-11, 2013
000195275 773__ $$q938-941$$t2013 IEEE 10th International Symposium On Biomedical Imaging (ISBI)
000195275 8564_ $$uhttp://bigwww.epfl.ch/publications/kirshner1303.html$$zURL
000195275 8564_ $$uhttp://bigwww.epfl.ch/publications/kirshner1303.pdf$$zURL
000195275 8564_ $$uhttp://bigwww.epfl.ch/publications/kirshner1303.ps$$zURL
000195275 909C0 $$0252054$$pLIB$$xU10347
000195275 909CO $$ooai:infoscience.tind.io:195275$$pconf$$pSTI$$pGLOBAL_SET
000195275 917Z8 $$x148230
000195275 937__ $$aEPFL-CONF-195275
000195275 970__ $$akirshner1303/LIB
000195275 973__ $$aEPFL$$rREVIEWED$$sPUBLISHED
000195275 980__ $$aCONF