Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Reports, Documentation, and Standards
  4. A Scalable Formulation of Probabilistic Linear Discriminant Analysis: Applied to Face Recognition
 
report

A Scalable Formulation of Probabilistic Linear Discriminant Analysis: Applied to Face Recognition

El Shafey, Laurent  
•
McCool, Chris
•
Wallace, Roy
Show more
2013

In this paper we present a scalable and exact solution for probabilistic linear discriminant analysis (PLDA). PLDA is a probabilistic model that has been shown to provide state-of-the-art performance for both face and speaker recognition. However, it has one major drawback, at training time estimating the latent variables requires the inversion and storage of a matrix whose size grows quadratically with the number of samples for the identity (class). To date two approaches have been taken to deal with this problem, to: i) use an exact solution which calculates this large matrix and is obviously not scalable with the number of samples or ii) derive a variational approximation to the problem. We present a scalable derivation which is theoretically equivalent to the previous non-scalable solution and so obviates the need for a variational approximation. Experimentally, we demonstrate the efficacy of our approach in two ways. First, on Labelled Faces in the Wild we illustrate the equivalence of our scalable implementation with previously published work. Second, on the large Multi-PIE database, we illustrate the gain in performance when using more training samples per identity (class), which is made possible by the proposed scalable formulation of PLDA.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

ElShafey_Idiap-RR-07-2013.pdf

Access type

openaccess

Size

1.49 MB

Format

Adobe PDF

Checksum (MD5)

64a1feca78df1494ca0137d4df41db4f

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés