Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Reports, Documentation, and Standards
  4. Improving Grapheme-based ASR by Probabilistic Lexical Modeling Approach
 
Loading...
Thumbnail Image
report

Improving Grapheme-based ASR by Probabilistic Lexical Modeling Approach

Rasipuram, Ramya  
•
Magimai.-Doss, Mathew  
2013

There is growing interest in using graphemes as subword units, especially in the context of the rapid development of hidden Markov model (HMM) based automatic speech recognition (ASR) system, as it eliminates the need to build a phoneme pronunciation lexicon. However, directly modeling the relationship between acoustic feature observations and grapheme states may not be always trivial. It usually depends upon the grapheme-to-phoneme relationship within the language. This paper builds upon our recent interpretation of Kullback-Leibler divergence based HMM (KL-HMM) as a probabilistic lexical modeling approach to propose a novel grapheme-based ASR approach where, first a set of acoustic units are derived by modeling context-dependent graphemes in the framework of conventional HMM/Gaussian mixture model (HMM/GMM) system, and then the probabilistic relationship between the derived acoustic units and the lexical units representing graphemes is modeled in the framework of KL-HMM. Through experimental studies on English, where the grapheme-to-phoneme relationship is irregular, we show that the proposed grapheme-based ASR approach (without using any phoneme information) can achieve performance comparable to state-of-the-art phoneme-based ASR approach.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Rasipuram_Idiap-RR-14-2013.pdf

Access type

openaccess

Size

490.84 KB

Format

Adobe PDF

Checksum (MD5)

436391bcbe1c51a5077d2873069cfd24

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés