Infoscience

Journal article

Annotating the meaning of discourse connectives by looking at their translation: The translation-spotting technique

The various meanings of discourse connectives like while and however are difficult to identify and annotate, even for trained human annotators. This problem is all the more important that connectives are salient textual markers of cohesion and need to be correctly interpreted for many NLP applications. In this paper, we suggest an alternative route to reach a reliable annotation of connectives, by making use of the information provided by their translation in large parallel corpora. This method thus replaces the difficult explicit reasoning involved in traditional sense annotation by an empirical clustering of the senses emerging from the translations. We argue that this method has the advantage of providing more reliable reference data than traditional sense annotation. In addition, its simplicity allows for the rapid constitution of large annotated datasets.

Related material