Abstract

The ironless inductive position sensor (I2PS) is a five-coil air-cored structure that senses the variation of flux linkage between supply and sense coils and relates it to the linear position of a moving coil. In air-cored structures, the skin and proximity effect can bring substantial variations of the electrical resistance, leading to important deviations from the low-frequency functioning. In this paper, an analysis of the effect of high-frequency phenomena on the I2PS functioning is described. The key-element is the modeling of the resistance as a function of the frequency, which starts from the analytical resolution of Maxwell's equations in the coil's geometry. The analysis is validated by means of experimental measurements on custom sensor coils. The resulting model is integrated with the existing low-frequency analysis and represents a complete tool for the design of an I2PS sensor, framing its electromagnetic behavior.

Details

Actions