Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. The role of energy dissipation of polymeric scaffolds in the mechanobiological modulation of chondrogenic expression
 
research article

The role of energy dissipation of polymeric scaffolds in the mechanobiological modulation of chondrogenic expression

Abdel-Sayed, Philippe  
•
Darwiche, Salim Elias  
•
Kettenberger, Ulrike  
Show more
2014
Biomaterials

Mechanical stimulation has been proposed to induce chondrogenesis in cell-seeded scaffold. However, the effects of mechanical stimuli on engineered cartilage may vary substantially between different scaffolds. This advocates for the need to identify an overarching mechanobiological variable. We hypothesize that energy dissipation of scaffolds subjected to dynamic loading may be used as a mechanobiology variable. The energy dissipation would furnish a general criterion to adjust the mechanical stimulation favoring chondrogenesis in scaffold. Epiphyseal chondro-progenitor cells were then subject to unconfined compression two hours per day during four days in different scaffolds, which differ only by the level of dissipation they generated while keeping the same loading conditions. Scaffolds with higher dissipation levels upregulated the mRNA of chondrogenic markers. In contrast lower dissipation of scaffolds was associated with downregulation of chondrogenic markers. These results showed that energy dissipation could be considered as a mechanobiology variable in cartilage. This study also indicated that scaffold with energy dissipation level close to the one of cartilage favors chondrogenic expression when dynamical loading is present.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Biomaterial(Philippe)_1.pdf

Access type

openaccess

Size

1.93 MB

Format

Adobe PDF

Checksum (MD5)

c1033f8833672a271f4d2bd38cdc197c

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés