Files

Abstract

Climate change in temperate mountain systems and associated increase in temperature and decrease in precipitation are expected to have strong implications for vegetation productivity, species diversity and carbon turnover in subalpine grasslands. Little is known, however, about the interaction between the effects of climate change and those of local land use management and possible changes in landscape structure. Pasture woodlands in the Swiss Jura Mountains are a traditional landscape, resulting from a long-lived sustainable use of grasslands and woodlands, and as such provide a suite of important ecosystem services to human society. These range from carbon sequestration and biodiversity preservation, to provision of timber and forage for livestock, and last but not least an aesthetic value, much appreciated by tourism. In this thesis various aspects of ecosystem functioning have been studied, investigating the combined effects of experimental climate change and land use on structurally different wooded pastures. An altitudinal gradient method has been used to simulate future climate change conditions, by imposing warmer and drier climate on subalpine turfs transplanted at lower elevation. The resulting gradient in mean annual temperature and precipitation – ranging from cold and wet in the subalpine zone, to warm and dry in the colline zone – has allowed for the detection of tipping points and altered states of ecosystem functioning in response to the treatments. The method employed provided also the possibility for a direct comparison of three land use types: unwooded pastures, sparsely wooded pastures, and densely wooded pastures (the result of pasture management intensity), in their response to climate perturbation. During the four years of experimental work, a series of observations have been made at the plot scale (square metre) in terms of plant performance and biogeochemical cycles, as well as at the landscape scale (hectare) in terms of forage production. A general threshold level for ecosystem resistance to experimental climate change was detected between the moderate IPCC scenario (+2 K mean annual temperature; -20 % annual precipitation) and the intensive IPCC scenario (+4 K mean annual temperature; -40 % annual precipitation). A concomitant gradient in ecosystem response to climate change was observed across the three land use types. The intensively managed unwooded pasture type was consistently more affected by the experimental treatment and rarely exhibited signs of resistance, especially under the intense climate change scenario. A drastic loss of plant species diversity, reduction of herbaceous biomass, impaired litter decomposition and soil microbial metabolic activity have all contributed to the altered state of ecosystem functioning. In contrast, the two extensively managed wooded pasture types showed considerable resistance to climate perturbation in terms of both above and belowground ecosystem processes. The reported inter-annual variation in herbaceous diversity and biomass production within these land use types demonstrated their resilience (recovery) potential too. Using a modelling approach for upscaling these results to the heterogeneous landscape of pasture woodlands in the Swiss Jura Mountains, has proven that extensively used wooded pastures could grant sustainable ecosystem services in terms of forage provision for cattle under climate change. Considering that the two experimental climate change intensities implemented this study are the projected ‘best’ and ‘worst’ case scenarios for the coming decades, the reported resistance of wooded pastures to climate change has to be embraced, and sustainable land use set as a goal in high altitude mountain pastures.

Details

PDF