Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Stable spectral methods for conservation laws on triangles with unstructured grids
 
research article

Stable spectral methods for conservation laws on triangles with unstructured grids

Hesthaven, Jan S.  
•
Gottlieb, D
1999
Computer Methods in Applied Mechanics and Engineering

This paper presents an asymptotically stable scheme for the spectral approximation of linear conservation laws defined on a triangle. Lagrange interpolation on a general two-dimensional nodal set is employed and, by imposing the boundary conditions weakly through a penalty term, the scheme is proven stable in L-2. This result is established for a general unstructured grid in the triangle. A special case, for which the nodes along the edges of the triangle are chosen as the Legendre Gauss-Lobatto quadrature points, is discussed in detail. The eigenvalue spectrum of the approximation to the advective operator is computed and is shown to result in an O(n(-2)) restriction on the time-step when considering explicit time-stepping. (C) 1999 Elsevier Science S.A. All rights reserved.

  • Details
  • Metrics
Type
research article
DOI
10.1016/S0045-7825(98)00361-2
Web of Science ID

WOS:000081650700008

Author(s)
Hesthaven, Jan S.  
•
Gottlieb, D
Date Issued

1999

Publisher

ELSEVIER SCIENCE SA

Published in
Computer Methods in Applied Mechanics and Engineering
Volume

175

Issue

3-4

Start page

361

End page

381

Editorial or Peer reviewed

REVIEWED

Written at

OTHER

EPFL units
MCSS  
Available on Infoscience
November 12, 2013
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/96902
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés