Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Cosmological constraints on Lorentz violating dark energy
 
research article

Cosmological constraints on Lorentz violating dark energy

Audren, B.  
•
Blas, D.  
•
Lesgourgues, J.  
Show more
2013
Journal Of Cosmology And Astroparticle Physics

The role of Lorentz invariance as a fundamental symmetry of nature has been lately reconsidered in different approaches to quantum gravity. It is thus natural to study whether other puzzles of physics may be solved within these proposals. This may be the case for the cosmological constant problem. Indeed, it has been shown that breaking Lorentz invariance provides Lagrangians that can drive the current acceleration of the universe without experiencing large corrections from ultraviolet physics. In this work, we focus on the simplest model of this type, called Theta CDM, and study its cosmological implications in detail. At the background level, this model cannot be distinguished from Lambda CDM. The differences appear at the level of perturbations. We show that in Theta CDM, the spectrum of CMB anisotropies and matter fluctuations may be affected by a rescaling of the gravitational constant in the Poisson equation, by the presence of extra contributions to the anisotropic stress, and finally by the existence of extra clustering degrees of freedom. To explore these modifications accurately, we modify the Boltzmann code class. We then use the parameter inference code MONTE PYTHON to confront Theta CDM with data from WMAP-7, SPT and WiggleZ. We obtain strong bounds on the parameters accounting for deviations from Lambda CDM. In particular, we find that the discrepancy between the gravitational constants appearing in the Poisson and Friedmann equations is constrained at the level of 1.8%.

  • Details
  • Metrics
Type
research article
DOI
10.1088/1475-7516/2013/08/039
Web of Science ID

WOS:000324032800042

Author(s)
Audren, B.  
Blas, D.  
Lesgourgues, J.  
Sibiryakov, S.  
Date Issued

2013

Publisher

Iop Publishing Ltd

Published in
Journal Of Cosmology And Astroparticle Physics
Issue

8

Start page

039

Subjects

dark energy theory

•

modified gravity

•

dark energy experiments

•

cosmological parameters from CMBR

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
LPPC  
Available on Infoscience
November 4, 2013
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/96706
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés