Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Enhanced Chlorine Dioxide Decay in the Presence of Metal Oxides: Relevance to Drinking Water Distribution Systems
 
research article

Enhanced Chlorine Dioxide Decay in the Presence of Metal Oxides: Relevance to Drinking Water Distribution Systems

Liu, Chao
•
Von Gunten, Urs  
•
Croue, Jean-Philippe
2013
Environmental Science & Technology

Chlorine dioxide (ClO2) decay in the presence of typical metal oxides occurring in distribution systems was investigated. Metal oxides generally enhanced ClO2 decay in a second-order process via three pathways: (1) catalytic disproportionation with equimolar formation of chlorite and chlorate, (2) reaction to chlorite and oxygen, and (3) oxidation of a metal in a reduced form (e.g., cuprous oxide) to a higher oxidation state. Cupric oxide (CuO) and nickel oxide (NiO) showed significantly stronger abilities than goethite (alpha-FeOOH) to catalyze the ClO2 disproportionation (pathway 1), which predominated at higher initial ClO2 concentrations (56-81 mu M). At lower initial ClO2 concentrations (13-31 mu M), pathway 2 also contributed. The CuO-enhanced ClO2 decay is a base-assisted reaction with a third-order rate constant of 1.5 x 10(6) M-2 s(-1) in the presence of 0.1 g L-1 CuO at 21 +/- 1 degrees C, which is 4-5 orders of magnitude higher than in the absence of CuO. The presence of natural organic matter (NOM) significantly enhanced the formation of chlorite and decreased the ClO2 disproportionation in the CuO-ClO2 system, probably because of a higher reactivity of CuO-activated ClO2 with NOM. Furthermore, a kinetic model was developed to simulate CuO-enhanced ClO2 decay at various pH values. Model simulations that agree well with the experimental data include a pre-equilibrium step with the rapid formation of a complex, namely, CuO-activated Cl2O4. The reaction of this complex with OH- is the rate-limiting and pH-dependent step for the overall reaction, producing chlorite and an intermediate that further forms chlorate and oxygen in parallel. These novel findings suggest that the possible ClO2 loss and the formation of chlorite/chlorate should be carefully considered in drinking water distribution systems containing copper pipes.

  • Details
  • Metrics
Type
research article
DOI
10.1021/es4015103
Web of Science ID

WOS:000323013400037

Author(s)
Liu, Chao
Von Gunten, Urs  
Croue, Jean-Philippe
Date Issued

2013

Publisher

American Chemical Society

Published in
Environmental Science & Technology
Volume

47

Issue

15

Start page

8365

End page

8372

Editorial or Peer reviewed

REVIEWED

Written at

OTHER

EPFL units
LTQE  
Available on Infoscience
November 4, 2013
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/96694
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés