Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Synaptic deficits are rescued in the p25/Cdk5 model of neurodegeneration by the reduction of β-secretase (BACE1)
 
Loading...
Thumbnail Image
research article

Synaptic deficits are rescued in the p25/Cdk5 model of neurodegeneration by the reduction of β-secretase (BACE1)

Giusti-Rodríguez, Paola
•
Gao, Jun
•
Gräff, Johannes  
Show more
2011
The Journal of neuroscience : the official journal of the Society for Neuroscience

Alzheimer's disease (AD) is the most common cause of dementia, and is characterized by memory loss and cognitive decline, as well as amyloid β (Aβ) accumulation, and progressive neurodegeneration. Cdk5 is a proline-directed serine/threonine kinase whose activation by the p25 protein has been implicated in a number of neurodegenerative disorders. The CK-p25 inducible mouse model exhibits progressive neuronal death, elevated Aβ, reduced synaptic plasticity, and impaired learning following p25 overexpression in forebrain neurons. Levels of Aβ, as well as the APP processing enzyme, β-secretase (BACE1), are also increased in CK-p25 mice. It is unknown what role increased Aβ plays in the cognitive and neurodegenerative phenotype of the CK-p25 mouse. In the current work, we restored Aβ levels in the CK-p25 mouse to those of wild-type mice via the partial genetic deletion of BACE1, allowing us to examine the Aβ-independent phenotype of this mouse model. We show that, in the CK-p25 mouse, normalization of Aβ levels led to a rescue of synaptic and cognitive deficits. Conversely, neuronal loss was not ameliorated. Our findings indicate that increases in p25/Cdk5 activity may mediate cognitive and synaptic impairment via an Aβ-dependent pathway in the CK-p25 mouse. These findings explore the impact of targeting Aβ production in a mouse model of neurodegeneration and cognitive impairment, and how this may translate into therapeutic approaches for sporadic AD.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

15751.full.pdf

Type

Publisher's Version

Access type

openaccess

Size

814.46 KB

Format

Adobe PDF

Checksum (MD5)

e38ff313e5aeb778af8c6a59b304e197

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés