Histone H3 K27 trimethylation inhibits H3 binding and function of SET1-like H3K4 methyltransferase complexes

Trimethylated histone H3 lysine 4 (H3K4) and H3K27 generally mark transcriptionally active and repressive chromatins, respectively. In most cell types, these two modifications are mutually exclusive and this segregation is crucial for the regulation of gene expression. However, how this anti-correlation is achieved has not been fully understood. Here we show that removal of the H3K27 trimethyl mark facilitates recruitment of SET1-like H3K4 methyltransferase complexes to their target genes by eliciting a novel interaction between histone H3 and two common subunits, WDR5 and RBBP5, of SET1-like complexes. Consistent with this result, H3K27 trimethylation destabilizes interactions of H3 with SET1-like complexes and antagonizes their ability to carry out H3K4 trimethylation of peptide (H3 residues 1-36), histone octamer and mononucleosome substrates. Altogether, our studies reveal that H3K27 trimethylation of histone H3 represses a previously unrecognized interaction between H3 and SET1-like complexes. This provides an important mechanism that directs the anti-correlation between H3K4 and H3K27 trimethylation.

Published in:
Molecular and Cellular Biology
American Society for Microbiology

 Record created 2013-10-24, last modified 2018-09-13

Rate this document:

Rate this document:
(Not yet reviewed)