A miniaturised autonomous sensor based on nanowire materials platform: the SiNAPS mote

A micro-power energy harvesting system based on core(crystalline Si)-shell(amorphous Si) nanowire solar cells together with a nanowire-modified CMOS sensing platform have been developed to be used in a dust-sized autonomous chemical sensor node. The mote (SiNAPS) is augmented by low-power electronics for power management and sensor interfacing, on a chip area of 0.25mm(2). Direct charging of the target battery (e. g., NiMH microbattery) is achieved with end-to-end efficiencies up to 90% at AM1.5 illumination and 80% under 100 times reduced intensity. This requires matching the voltages of the photovoltaic module and the battery circumventing maximum power point tracking. Single solar cells show efficiencies up to 10% under AM1.5 illumination and open circuit voltages, Voc, of 450-500mV. To match the battery's voltage the miniaturised solar cells (similar to 1mm(2) area) are connected in series via wire bonding. The chemical sensor platform (mm 2 area) is set up to detect hydrogen gas concentration in the low ppm range and over a broad temperature range using a low power sensing interface circuit. Using Telran TZ1053 radio to send one sample measurement of both temperature and H-2 concentration every 15 seconds, the average and active power consumption for the SiNAPS mote are less than 350nW and 2.1 mu W respectively. Low-power miniaturised chemical sensors of liquid analytes through microfluidic delivery to silicon nanowires are also presented. These components demonstrate the potential of further miniaturization and application of sensor nodes beyond the typical physical sensors, and are enabled by the nanowire materials platform.

Schmid, U.
Aldavero, Jlsd
Leesterschaedel, M.
Published in:
Smart Sensors, Actuators, And Mems Vi, 8763
Presented at:
Conference on Smart Sensors, Actuators, and MEMS VI
Bellingham, Spie-Int Soc Optical Engineering

 Record created 2013-10-01, last modified 2018-03-17

Rate this document:

Rate this document:
(Not yet reviewed)